Stability analysis of piezoelectric beams

نویسنده

  • T. Voß
چکیده

Piezoelectric materials are used in many engineering application. When modeling piezoelectric materials the standard assumption is that the electromagnetic field which is used to actuate the piezoelectric material is quasi static. In this paper we show that although the assumption of a quasi static electrical field is valid when one is interested in simulating a piezoelectric material, this assumption renders the system non stabilizable in terms of control. We also show that this issue is caused by the assumption of a quasi static electrical field and therefore can be avoided by modeling a dynamical electrical field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Stability of Functionally Graded Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation

This paper studies dynamic stability of functionally graded beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The Young’s modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing dynamic equation is established. The eff...

متن کامل

Linear stability analysis of piezoelectric controlled beams subjected to nonconservative loads

Discrete model of piezoelectric controlled beams, subjected to follower forces, are studied in this paper. The failure of a similar controller in improving stability properties of the beam is also discussed, this being in contrast with the common practice in the use of piezoelectric devices for which similarity is requested in order to maximize the energy exchange between structure and controll...

متن کامل

Free Vibration Analysis of Functionally Graded Piezoelectric Material Beam by a Modified Mesh Free Method

A mesh-free method based on moving least squares approximation (MLS)  and weak form of governing equations including two dimensional equations of motion and Maxwell’s equation is used to analyze the free vibration of functionally graded piezoelectric material (FGPM) beams. Material properties in beam are determined using a power law distribution. Essential boundary conditions are imposed by the...

متن کامل

Nonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams

In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...

متن کامل

Theoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers

In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable  solids is presented, and  governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed  using the  principle  of virtua...

متن کامل

Free Vibration of Functionally Graded Beams with Piezoelectric Layers Subjected to Axial Load

This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers subjected to axial compressive loads. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing equation is established. Resulting equation is solved using the Euler’s Equation. The effects of the constituent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011